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In turbulence, nonlinear terms drive energy transfer from large-scale eddies into small scales
through the so-called energy cascade. Turbulence often relaxes toward states that minimize energy;
typically these states are considered globally. However, turbulence can also relax toward local
quasi-equilibrium states, creating patches or cells where the magnitude of nonlinearity is reduced
and energy cascade is impaired. We show, for the first time, compelling observational evidence that
this “cellularization” of turbulence can occur due to local relaxation in a strongly turbulent natural
environment such as the Earth’s magnetosheath.

Introduction.–Turbulence is disordered, but may also
involve relaxation processes that drive the system toward
statistically predictable states [1]. The problem of turbu-
lent relaxation has been addressed from theoretical [2–4]
and numerical [5–7] perspectives. Relaxation may lead to
the emergence of long-time metastable quasi-equilibrium
states. However, there is evidence that [8–12] partially
relaxed states can emerge on time scales on the order of a
large-scale nonlinear (eddy turnover) times. Rapid local
relaxation principles can contribute to the understanding
of nonlinear processes in space plasma, astrophysical and
geophysical systems, by accounting for the generation of
distinctive measurable correlations. Here we present ob-
servational evidence that several forms of rapid relax-
ation – including Alfvénic, Beltrami, and force-free states
– occur in the highly turbulent terrestrial magnetosheath
plasma.

A canonical example is two-dimensional (2D) hy-
drodynamics, which exhibits both slow emergence of
metastable global maximum entropy states [13, 14] as
well as a local multiscale rapid relaxation [15]. This
system is relevant to laboratory plasmas [16] geophys-
ical flows, ionospheric structure [17], and other self-
organizing systems [18].

Two classes of relaxation have been discussed in mag-
netoydrodynamics (MHD): (I) Selective decay processes
[3, 19] in which a global long-wavelength relaxed state
emerges by minimization of one ideal invariant (e.g., en-
ergy) relative to another (e.g., magnetic helicity) [20]; an
example is Taylor relaxation [21, 22]; and (II) dynamic
alignment processes, in which a distinctive correlation,
such as large amplitude Alfvénic fluctuations, emerge dy-
namically [23, 24]. Both types reduce the amplitude of
nonlinearities [7].

Plasma relaxation is also relevant to solar and inter-
planetary studies, where for example, magnetic clouds
are typically modeled as force-free Lundquist states [25].

Taylor relaxation may drive these somewhat isolated
magnetic flux tubes toward force-free states [26]. A
broader class of target Grad-Shafranov equilibria are
force-balance states, [27], which can be identified in solar
wind data [28, 29]. Maximum entropy states [30] are also
purported to emerge through turbulent relaxation.

Space physics studies of relaxation have previously
identified [31], relaxed Alfvénic patches of turbulence at
1 au. Moreover, the “patchiness” of dynamically aligned
states supports the idea of cellularized structure of mag-
netohydrodynamics (MHD) turbulence [32], the appear-
ance of intermittency, as well as the incompatibility with
the idea of turbulence arising from a superposition of
Gaussian fields. The above-mentioned works investigat-
ing turbulence in the solar wind were necessarily limited
by the lack of in-situ multi-spacecraft missions. There-
fore, their analyses could investigate only the field align-
ments that do not involve the computation of derivatives
e.g. Alfvénic states which require an (anti)alignment be-
tween the velocity and magnetic fields. Preliminary work
to quantify these correlations has been done using Clus-
ter solar wind data [33].

The present paper closes a gap left in the past, namely
the lack of experimental evidence assessing the poten-
tial alignments predicted by the MHD theory. This is
made possible by employing data from the Magneto-
spheric Multiscale (MMS) Mission [34]. In addition, tur-
bulence in the Earth’s magnetosheath can be imagined
as “young” [35] since it is freshly modified by the solar
wind passing through the bow shock. Identifying relaxed
states in the magnetosheath strongly suggests that such
states emerge quite rapidly.

Relaxation processes in MHD.–The relaxation pro-
cesses under consideration can be studied in the con-
text of simple MHD model equations that consist of a
mix of linear and nonlinear terms. It is straightfor-
ward to show that states of minimum energy coincide
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with a minimization of the magnitude of the nonlin-
ear terms. Ideal incompressible MHD equations read
∂v
∂t + (v ·∇)v = −∇p + j × b, ∂b

∂t = ∇ × (v × b), to-
gether with the constraints ∇ · v = ∇ · b = 0. In these
equations, a is the vector potential such that b = ∇×a,
j = ∇×b is the current density, p is the kinetic pressure
and v is the velocity field.

The three quadratic rugged invariants of 3D-MHD [2,
36] are the total energy E = 1

2

∫
V

(
|v|2 + |b|2

)
d3x, and

the two pseudo-scalars: the cross helicity Hc = 1
2

∫
V
v ·

b d3x, and the magnetic helicity Hm = 1
2

∫
V
a · b d3x,

with the integrals being evaluated over an appropriate
volume V .

The states that minimize energy keeping Hc and Hm

constant can be recovered solving the variational prob-
lem δ

∫ (
|v|2 + |b|2 − 2α v · b + 2φa · b

)
d3x = 0 where

2α and 2φ are Lagrange multipliers. The obtained con-

strained fields are such that v = αb = α(1−α)2
φ j =

(1−α)2
φ ω where ω = ∇× v is the vorticity [7, 10, 33].

One immediately notices that the above relationships
describe fields that tend to suppress the non-linear terms
in the MHD equations. They are also associated with
particular equilibrium states, such as the Taylor force-
free state j ∝ b [21, 37]. However, the reduction of non-
linearities and incomplete relaxation to the target states
is of primary interest here. Moreover, suppression of non-
linearity is even more widespread; if one rewrites the term

(v ·∇)v = ∇
(
v2

2

)
− v ×ω, it will be shown below that

the terms on r.h.s. also evolve toward (anti)alignment.
In addition, the Lorentz force term (j×b) and the Lamb
vector (v × ω), each contributing to accelerations, tend
to anti-align, thus further suppressing any residual non-
linearity.

A convenient measure for identifying (local) partially
relaxed states is the inner product (, ). Given two vectors
f and g, we evaluate the distribution of the cosines of

the comprised angles, namely: cos(θ) = (f ,g)
||f || ||g|| where

|| · || represents a vector magnitude. When f and g are
(anti)aligned 3D vectors, the distribution of the cosine
of the angles between the two tends to peak at values
cos(θ) = ±1. On the other hand, if they have random
orientations with respect to one another, the distribution
will be flat at cos(θ) ∼ 0.5.

Data selection and analysis.–We use a total of 1180
MMS intervals in the turbulent magnetosheath from 2015
Sep 08 through 2018 Jan 01. These range in duration
from 50 to 540 seconds as reported in Fig. 1. Velocity and
magnetic field measurements are obtained from the Fast
Plasma Investigation [FPI, 38] and the Fluxgate magne-
tometers [FGM, 39], respectively. Magnetic field burst
measurements (128 Hz) have been resampled to match
the resolution of ion bulk velocity (150 ms). Spacecraft
spintone is removed from the ion data.

As a check on the FPI data quality, we found density

values greater than 50cm−3, which might be less reliable.
172 intervals out of 1180 (. 15%) have an average num-
ber density > 50cm−3. The subsequent analysis will not
be greatly affected by these intervals.

FIG. 1. Nominal position of the Earth’s magnetopause in
GSE coordinates according to [40] (black curve), and loca-
tions of the MMS intervals analyzed (green circles). Earth is
indicated as a blue circle. The inset shows the histogram of
the durations of such intervals.

The vorticity and current density fields are computed
using the reciprocal vector technique for tetrahedra [41],
resulting in a single vector time series for each. We then
interpolate the bulk flow speed and the magnetic field
from the four MMSs to the barycenter of the tetrahedron.
Before computing the alignment cosines, it is necessary
to low-pass filter all the fields to focus on inertial-range
scales [42]. This is done by averaging over a 1-second
running window, without changing the resolution. At
last, the mean values are subtracted from the bulk flow
and the magnetic field, since alignments are calculated
between fluctuations.

Results.–For each interval, the cosine of the angles be-
tween all the appropriate pairs of fields has been mea-
sured. As one would expect, not all intervals show in-
dications of alignment between pairs of fields; some in-
tervals show a good degree of relaxation, while others do
not. Statistical significance is obtained by compiling dis-
tributions of the cosines of the angles of each type from
all 1180 intervals used in the survey.

Figure 2 shows the distribution of the alignment
cosines for several relevant pairs of fields. Each pair,
when aligned (or, anti-aligned) suppresses a nonlinear
term in the dynamical equations. It is apparent that
there are varying degrees of alignment, and therefore
varying degrees of suppression. We now briefly comment
on these.

The Alfvénic state, i.e., pointwise (v, b) alignment, is
one of the most fundamental and frequently discussed
states being associated both with linear MHD Theory
and nonlinear theory. When MHD equations are writ-
ten in the Elsässer variables (defined in terms of velocity
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FIG. 2. Global distributions of alignments evaluated over all
selected intervals.

and magnetic field fluctuations z± = v±b), it is evident
that incompressible nonlinearity arises from the interac-
tion between the z+ and z− fields. When cross helicity
is high the evolution of turbulence is hampered; this re-
quires both (v, b) alignment, and energy equipartition
between (v and b). We also investigated the behavior of
(v, b) alignment after sector-rectifying the magnetic field
[31], but little change was seen to occur. Although the
sign of cross helicity is crucial in determining whether the
Alfvénic fluctuations propagate outward (anti-sunward)
or inward, it has no effect on the alignment. The study
of the propagation of Alfvénic fluctuations in the magne-
tosheath is a problem that needs to be addressed more
thoroughly [43], but such a discussion is beyond the scope
of this paper.

The velocity and vorticity fields do not display global
Beltrami alignment, indicated in Fig. 2 by (v,ω).
The same result was found in 3D-MHD simulations [10]
and attributed to the fact that kinetic helicity,

∫
v ·

ω d3r, is not an invariant and is therefore unconstrained.
Beltrami-like alignments have also been previously dis-
cussed in solar wind observations [33] where accuracy is
limited by large spacecraft separations.

The status of Beltrami (v,ω) correlations differs in
hydrodynamics (HD). A pioneering work, [8] studied
velocity-vorticity patterns in turbulent flows and found
that v and ω align in the center of a channel where the
flow is relatively laminar. The alignment disappears in
the turbulent transition region between the walls and the
central region. When only fluctuations, and not the mean
flow, were considered, alignment was lost throughout the
whole channel. This parallels the present result if one
imagines flux ropes to be counterparts of HD channels. A
second interesting interpretation follows from the corre-
lation between the vorticity and the rate of strain tensor
and its eigenvectors. Ref. [8] found that where the dissi-
pation (measured as S2

ij = 1/2(∂ui/∂xj + ∂uj/∂xi)
2) is

large, the alignment is lost.

Enhancement of current-magnetic field alignment
(j, b) implies an approach to a force-free condition, equiv-
alent to the Beltrami property for the magnetic field
(∇ × b ∝ b). Such states lend naturally to a descrip-
tion in terms of flux tubes, which may be locally nearly
force free, but also interacting, perhaps mainly at their
boundaries [44]. When not force-free, such flux tubes
may be nearly force balanced which represents an addi-
tional type of cellularization of turbulence. This type of
suppression of nonlinearity, involving pressure balances,
will be examined in a separate study. Here we do not in-
volve pressure at this stage as it introduces complications
such as considerate separate electron and proton pres-
sures (separate plasma beta) [45]. Force-balanced states
are often studied as Grad-Shafranov equilibria[27].

The (j,ω) alignment could heuristically be related to
the dynamics of the Alfvénic state, but it can also be
linked to other basic properties of turbulence. In the
equation that involve the generalized vorticity Ω± = j±
ω [46], the nonlinear term is z± ·∇Ω∓ that is suppressed
when j ∼ ω.

The Lorentz force and the Lamb vector show a slight
anticorrelation as expected from the equations since these
two terms should be of opposite signs in order to reduce
any residual nonlinearity.

Transmission of relaxed patches across the bow shock.–
How turbulence is processed crossing a shock is a subject
of ongoing interest [47]. In particular, a recent work [48]
examined the possibility that flux ropes can “survive”
the crossing of the Earth’s bow shock, with different de-
grees of deformations. We now demonstrate how relaxed
Alfvénic patches of solar wind plasma are modified across
the bow shock. The analysis focuses on the stream of
plasma that was found to be sampled by both WIND
in the pristine solar wind, upstream, and, 55 minutes
later, by MMS downstream of the bow shock. The inter-
val spans 2017 Dec 31 21:20 through 2018 Jan 01 01:20
UTC. Since Beltrami states cannot be measured by the
single WIND spacecraft, we focus only on the Alfvénic
state. We use measurements for velocity and magnetic
fields from the Solar Wind Experiment [SWE, 49] and
Magnetic Field Investigation [MFI, 50] suites on WIND.
For consistency between the spacecraft, which have dif-
ferent time resolutions, we downsample the magnetic and
velocity fields to a 1-minute cadence and then evaluate
the angle between the two fields for WIND and MMS sep-
arately. The two distributions of the Alfvénic alignment
are shown in Fig. 3.

Clearly, the presence of alignments in the pristine solar
wind does not guarantee that these will persist down-
stream. The evidence suggests that a small fraction
of alignment is maintained, with an overall significant
reduction. There is some transmission across the bow
shock, but the presence of relaxed patches in the magne-
tosheath may also be due to the relatively rapid turbu-
lence evolution in the magnetosheath.



4

FIG. 3. Alfvénic alignment within the same plasma parcel
measured by WIND and MMS, upstream and downstream of
the Earth’s bow shock respectively. The distributions indicate
that shock crossing reduces the degree of alignment.

Residency times in relaxed patches.–Let us now investi-
gate the link between the relaxed regions and the cellular-
ization of turbulence. Starting from the cosine time series
obtained as described in the previous sections, we mea-
sure for each interval how much time the system dwells
above a certain alignment threshold (in absolute magni-
tude). The distributions of such residency times (RT)
defined as cosine larger than 0.5 or smaller than −0.5
are shown in Fig. 4 and indicated on the left axis as pdf
RT>0.5. The first feature one notices is that the Alfvén
aligned states persist for longer times than the others,
evidenced by a more extended distribution. The distri-
butions show a more or less extended power law with a
sharp cutoff at the upper end: This behavior is charac-
teristic of self-similar phenomena, supporting the picture
of cellularized turbulence comprising distinct patches of
different sizes.

A standard estimate of the typical size of energy-
containing eddies is given by the correlation scale. (Solar
wind and magnetosheath measurements are often quoted
in the time domain, the two being approximately propor-
tional when invoking the Taylor frozen-in flow hypothe-
sis [51].) Here the eddy size and correlation scale are
estimated using the magnetic field autocorrelation func-
tion R(τ) = 〈b(t) · b(t + τ)〉t, where b are the magnetic
field fluctuations and τ is the time lag. The average
〈. . . 〉t is performed over the associated magnetosheath
interval. The correlation time is determined as the first
time lag at which the normalized autocorrelation func-
tion R̃(τ) = R(τ)/R(0) falls to 1/e [e-folding, 52]. The
histogram of the correlation times for each of our 1180
intervals is reported in Fig. 4.

Finally, for each residency time distribution, we calcu-
late the first moment (frequency of occurrence) distribu-
tions (pdfs) P(∗) as T =

∫
ηP(η) dη. The probability

density functions are already normalized as
∫
P(η) dη =

1. In Fig. 4 the first moments T for each pdf are indi-
cated with vertical lines having the same line style as the
respective probability density.

FIG. 4. Probability density functions of residency times in
patches where the pairs of vectors have comprised angles with
a cosine larger than 0.5 or smaller than −0.5 (left axis). His-
togram of the correlation times calculated for all the consid-
ered intervals, gray bars (right axis). Vertical lines indicate
first moments of respective pdfs.

The immediate feature one notices is the correspon-
dence between the average residency time of the Alfvén
state and the most probable correlation time. This corre-
spondence is explained naturally by the above-mentioned
cellularization of turbulence: The fabric of the turbulent
solar wind is formed by patches (eddies) that tend toward
a local equilibrium; their size can be estimated with the
correlation time, and we have shown that it corresponds
to the average time the magnetosheath plasma spends in
an Alfvénic relaxed quasi-equilibrium.

The other classes of relaxed states persist, on aver-
age, for periods of time smaller than the Alfvénic states.
There are several possible reasons for this: (i) non-
Alfv’enic alignments involve derivatives of fields, there-
fore, acting on smaller, faster scales; (ii) the Alfvén state
is more directly correlated with larger scale MHD phe-
nomena, such as flux tubes. Additionally, the Beltrami
and force-free states have similar time scales, suggesting
an analogy between HD and MHD findings: From [8], the
Beltrami state is found within the central channel flow
region; likewise, while in plasma, the force-free region in
a flux rope may be near the magnetic axis, far from the
tube’s borders, where discontinuities and bursts of activ-
ity, e.g., reconnection, are often found [44, 53, 54].

Discussion and Conclusions.– The rapid appearance
of characteristic correlations due to relaxation processes
have been addressed previously from theoretical [5], nu-
merical [10], and observational [31] points of view. We
presented here, for the first time in a natural plasma,
a full study of several different contributions to relax-
ation and suppression of nonlinearity using MMS mea-
surements in the magnetosheath.

Some of the special states discussed in this paper
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(Alfvénic, force-free) are well-known and studied in sev-
eral different aspects in the solar wind and plasma com-
munity; though others are not. In particular, the Bel-
trami state, well studied in hydrodynamics, is poorly ad-
dressed in MHD and solar wind studies. The possibility
that the Beltrami state is attained where the dissipation
is small and destroyed where it is large may set the direc-
tion for new studies correlating dissipation and relaxation
in plasma. A fundamental measure of dissipation is the
pressure work [55], which can be measured with MMS
[56]. Ultimately we expect that intermittency of the dis-
sipation may be anticorrelated with relaxation, as might
be inferred from flux tube structure seen in both simu-
lations [57] and observations [44, 58]. A clear direction
for future research is to examine the spatial relationship
between relaxation signatures and dissipation in greater
detail.

Regarding the fast occurrence of relaxation, previous
numerical works [10] assessed the emergence of align-
ments after a few Alfvén times. However, the related
observational studies performed in the solar wind [31, 33]
could not infer any temporal evolution, as 1 au turbulence
potentially had at least several nonlinear/Alfvén times to
evolve [35]. Conversely, the magnetosheath plasma con-
sists of strongly perturbed solar wind plasma (by passage
through the bow shock) while it also evolves on much
more rapid timescales [59]. Therefore, the presence of
relaxed patches in the magnetosheath suggests that re-
laxation is a fast-occurring phenomenon, but it is also
possible that relaxed patches are degraded but still sur-
vive passage through the shock. It is worth mentioning
the recent results from [48] that investigated the trans-
mission of flux ropes across the Earth’s bow shock. Their
finding is that some structures can survive the crossing of
the bow shock, hinting that relaxed patches downstream
may come directly from the solar wind (possibly with a
reduced degree of alignment.)

In hydrodynamics [46, 60, 61] relaxation often involves
alignments of eigenvectors of the rate-of-strain tensor
with other quantities, such as vorticity. Such alignments
provide additional topological information. Such study,
adapted to the turbulent fields in plasmas [62] may pro-
vide valuable physical insights in the study of magne-
tosheath turbulence.

By examining relaxation in the magnetosheath, this
study closes a gap in the current literature. We also
expect that it will motivate a number of additional stud-
ies as suggested above. A major extension to the solar
wind awaits upcoming multispacecraft missions such as
Helioswarm [63].

This research is supported in part by the MMS The-
ory and Modeling program grant 80NSSC19K0284, and
the NSF/DOE program under grant AGS-2108834 at the
University of Delaware.
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[28] B. U. Ö. Sonnerup, H. Hasegawa, R. E. Denton, and
T. K. M. Nakamura, Reconstruction of the electron dif-
fusion region, Journal of Geophysical Research (Space
Physics) 121, 4279 (2016).
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